########### ISASP DASHBOARD ##################
library(tidyr)
library(dplyr)
library(ggplot2)
subgroups <- c("AmericanIndianorAlaskan","Asian", "AfricanAmerican", "HispanicLatino","HawaiianPacificIslander","White",
"MilitaryConnected","SE","504","FRL","GT","ELL","T1L","T1M","Homeless")
df <- ISASP_DATA
df %>%
select(DistrictName, LastName, FirstName, Gender, StateID, DistrictID, Grade,
AmericanIndianorAlaskan,Asian, AfricanAmerican,HispanicLatino,HawaiianPacificIslander,
White, MilitaryConnected,SE, "plan504"=`504.0`, FRL, GT,ELL,T1L,T1M, Homeless) -> studentDemo
###### GET MAIN SCORES INTO THEIR OWN TABLES
df %>%
select(StateID, Grade, #identifer and grade
ELAScaleScore, ELAAchLvl, ELARawScore, #main ELA Scores
ReadScaleScore, ReadRawScore, #main Reading Scores
LWScaleScore, LWRawScore #main Writing Scores
) -> scoresELA
df %>%
select(StateID, Grade, #identifer and grade
MathScaleScore, MathAchLvl, MathRawScore
) -> scoresMath
df %>%
select(StateID, Grade, #identifer and grade
SciScaleScore, SciAchLvl, SciRawScore
) -> scoresScience
###### SUBTESTSCORES ########
#### Reading ####
### KID ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=KIDLabel, "pctCorrect"=KIDPctCorrect, "pointsPossible"=KIDPntPoss, "subScore"=KIDRawScore
) -> scoresKID
### CS ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=CSLabel, "pctCorrect"=CSPctCorrect, "pointsPossible"=CSPntPoss, "subScore"=CSRawScore
) -> scoresCS
### IKI ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=IKILabel, "pctCorrect"=IKIPctCorrect, "pointsPossible"=IKIPntPoss, "subScore"=IKIRawScore
) -> scoresIKI
#### Langauge/Writing ####
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=RPKLabel, "pctCorrect"=RPKPctCorrect, "pointsPossible"=RPKPntPoss, "subScore"=RPKRawScore
) -> scoresRPK
### PDW ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=PDWLabel, "pctCorrect"=PDWPctCorrect, "pointsPossible"=PDWPntPoss, "subScore"=PDWRawScore
) -> scoresPDW
### TTP ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=TTPLabel, "pctCorrect"=TTPPctCorrect, "pointsPossible"=TTPPntPoss, "subScore"=TTPRawScore
) -> scoresTTP
### COSE-KOL
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=COSEKLPLabel, "pctCorrect"=COSEKLPPctCorrect, "pointsPossible"=COSEKLPPntPoss, "subScore"=COSEKLPRawScore
) -> scoresCOSE
### VAU ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=VAULabel, "pctCorrect"=VAUPctCorrect, "pointsPossible"=VAUPntPoss, "subScore"=VAURawScore
) -> scoresVAU
#### Science ####
### LS ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=LSLabel, "pctCorrect"=LSPctCorrect, "pointsPossible"=LSPntPoss, "subScore"=LSRawScore
) -> scoresLS
### PS ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=PSLabel, "pctCorrect"=PSPctCorrect, "pointsPossible"=PSPntPoss, "subScore"=PSRawScore
) -> scoresPS
### ES ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=ESLabel, "pctCorrect"=ESPctCorrect, "pointsPossible"=ESPntPoss, "subScore"=ESRawScore
) -> scoresES
#### Math ####
### MathD1 ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=MathD1Label, "pctCorrect"=MathD1PctCorrect, "pointsPossible"=MathD1PntPoss, "subScore"=MathD1RawScore
) -> scoresMathD1
### MathD2 ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=MathD2Label, "pctCorrect"=MathD2PctCorrect, "pointsPossible"=MathD2PntPoss, "subScore"=MathD2RawScore
) -> scoresMathD2
### MathD3 ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=MathD3Label, "pctCorrect"=MathD3PctCorrect, "pointsPossible"=MathD3PntPoss, "subScore"=MathD3RawScore
) -> scoresMathD3
### MathD4 ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=MathD4Label, "pctCorrect"=MathD4PctCorrect, "pointsPossible"=MathD4PntPoss, "subScore"=MathD4RawScore
) -> scoresMathD4
### MathD5 ###
df %>%
select(StateID, Grade, #identifer and grade
"testLable"=MathD5Label, "pctCorrect"=MathD5PctCorrect, "pointsPossible"=MathD5PntPoss, "subScore"=MathD5RawScore
) -> scoresMathD5
##### CREATING TIDY DATA FRAMES#####
tidyReadingScores <- rbind(scoresKID, scoresCS, scoresIKI)%>%
mutate("testDomain"="Reading")
rm(scoresKID, scoresCS, scoresIKI)
tidyLWScores <- rbind(scoresRPK, scoresPDW, scoresTTP, scoresCOSE, scoresVAU)%>%
mutate("testDomain"="Language/Writing")
rm(scoresRPK, scoresPDW, scoresTTP, scoresCOSE, scoresVAU)
tidySciScores <- rbind(scoresLS, scoresPS, scoresES)%>%
mutate("testDomain"="Science")
rm(scoresLS, scoresPS, scoresES)
tidyMathScores <- rbind(scoresMathD1, scoresMathD2, scoresMathD3, scoresMathD4, scoresMathD5)%>%
mutate("testDomain"="Math")
rm(scoresMathD1, scoresMathD2, scoresMathD3, scoresMathD4, scoresMathD5)
tidySubTests <- rbind(tidyReadingScores,tidyLWScores, tidyMathScores, tidySciScores)
tidySubTests %>%
group_by(testLable, Grade) %>%
summarise(numberofpoints=mean(pointsPossible))%>%
na.omit()-> questions
tidySubTests %>%
group_by(testLable, Grade)%>%
summarise(medianScore= median(pctCorrect)) %>%
pivot_wider(names_from = testLable, values_from = medianScore) %>%
arrange(Grade) %>%
select(Grade,
KID, CS, IKI,
RPK, PDW, TTP, `COSE-KOL`, VAU,
LS, PS, ES,
OA, NBT, NF, MD, G, RP, NS, EE, SP, `F`, S, A, N)-> medianSubScores
tidySubTests %>%
group_by(testLable, Grade)%>%
summarise(meanScore= mean(pctCorrect)) %>%
pivot_wider(names_from = testLable, values_from = meanScore) %>%
arrange(Grade) %>%
select(Grade,
KID, CS, IKI,
RPK, PDW, TTP, `COSE-KOL`, VAU,
LS, PS, ES,
OA, NBT, NF, MD, G, RP, NS, EE, SP, `F`, S, A, N)-> meanSubScores
# COSE-KOL,PDW,RPK,TTP,VAU ##Langauge/writing
# A,F,G,MD,N,NBT,NS ,OA ,RP ,S,SP,
# CS,IKI,KID ##Reading
# ES, LS, PS Science
t(testdf)->test2
scoresELA %>% ggplot(aes(x=ELAScaleScore))+
geom_histogram(aes(fill=ELAAchLvl), binwidth = 4)+
facet_wrap(vars(Grade))+
theme_minimal()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.